Understanding BGP Regular Expressions

Regular expressions are strings of special characters that can be used to search and find character patterns. Within the scope of BGP in Cisco IOS regular expressions can be used in show commands and AS-Path access-lists to match BGP prefixes based on the information contained in their AS-Path.
In order to understand how to build regular expressions we first need to know what the character definitions are for the regex function of IOS. The below table illustrates the regex characters and their usage. This information is contained in the Cisco IOS documentation under the Appendix of Cisco IOS Terminal Services Configuration Guide, Release 12.2.
+------------------------------------------------------+
| CHAR | USAGE                                         |
+------------------------------------------------------|
|  ^   | Start of string                               |
|------|-----------------------------------------------|
|  $   | End of string                                 |
|------|-----------------------------------------------|
|  []  | Range of characters                           |
|------|-----------------------------------------------|
|  -   | Used to specify range ( i.e. [0-9] )          |
|------|-----------------------------------------------|
|  ( ) | Logical grouping                              |
|------|-----------------------------------------------|
|  .   | Any single character                          |
|------|-----------------------------------------------|
|  *   | Zero or more instances                        |
|------|-----------------------------------------------|
|  +   | One or more instance                          |
|------|-----------------------------------------------|
|  ?   | Zero or one instance                          |
|------|-----------------------------------------------|
|  _   | Comma, open or close brace, open or close     |
|      | parentheses, start or end of string, or space |
+------------------------------------------------------+
Some commonly used regular expressions include:
+-------------+---------------------------+
| Expression  | Meaning                   |
|-------------+---------------------------|
| .*          | Anything                  |
|-------------+---------------------------|
| ^$          | Locally originated routes |
|-------------+---------------------------|
| ^100_       | Learned from AS 100       |
|-------------+---------------------------|
| _100$       | Originated in AS 100      |
|-------------+---------------------------|
| _100_       | Any instance of AS 100    |
|-------------+---------------------------|
| ^[0-9]+$    | Directly connected ASes   |
+-------------+---------------------------+
Let’s break some of the above expressions down step-by-step. The first one “.*” says to match any single character (“.”), and then find zero or more instances of that single character (“*”). This means zero or more instances or any character, which effectively means anything.
The next string “^$” says to match the beginning of the string (“^”), and then immediately match the end of the string (“$”). This means that the string is null. Within the scope of BGP the only time that the AS-Path is null is when you are looking at a route within your own AS that you or one of your iBGP peers has originated. Hence this matches locally originated routes.
The next string “^100_” says to match the beginning of the string (“^”), the literal characters 100, and then a comma, an open or close brace, an open or close, a parentheses, the start or end of the string, or a space (“_”). This means that the string must start with the number 100 followed by any non-alphanumeric character. In the scope of BGP this means that routes which are learned from the AS 100 will be matched, as 100 will be the first AS in the path when AS 100 is sending us routes.
The next string “_100$” is the exact opposite of the previous one. This string says to start with any non-alphanumeric character (“_”), followed by the literal characters 100, followed by the end of the string (“$”). This means that AS 100 is the last AS in the path, or in other words that the prefix in question was originated by AS 100.
The next string “_100_” is the combination of the two previous strings with some extra matches. This string means that the literal characters 100 are set between any two non-alphanumeric characters. The first of these could be the start of the string, which would match routes learned from AS 100, while the second of these could be the end of the string, which would match routes originated in AS 100. Another case could be that the underscores represent spaces, in which the string would match any other AS path information as long as “ 100 ” is included somewhere. This would match any routes which transit AS 100, and therefore “_ASN_” is generally meant to match routes that transit a particular AS as defined by the number “ASN”.
The final string “^[0-9]+$” is a little more complicated match. Immediately we can see that the string starts (“^”), and we can see later that it ends (“$”). In the middle we see a range of numbers 0-9 in brackets, followed by the plus sign. The numbers in brackets mean that any number from zero to nine can be matched, or in other words, any number. Next we have the plus sign which means one or more instances. This string “[0-9]+” therefore means one or more instance of any number, or in other words any number including numbers with multiple characters (i.e. 1, 12, 123, 1234, 12345678, etc.). When we combine these all together this string means routes originated in any directly connected single AS, or in other words, the routes directly originated by the peers of your AS.
Now let’s look at a more complicated match, and using the above character patterns we will see how we can construct the expression step by step. Suppose we have the following topology below, where we are looking at the network from the perspective of AS 100.
+--------+ +--------+ +--------+ +--------+
| AS 200 |-| AS 201 |-| AS 202 |-| AS 203 |\
+--------+ +--------+ +--------+ +--------+ \
                                             \
           +--------+ +--------+ +--------+\  \
           | AS 300 |-| AS 301 |-| AS 302 | \  \
           +--------+ +--------+ +--------+  \  -+--------+
                                              >--| AS 100 |
                      +--------+ +--------+  /  -+--------+
                      | AS 400 |-| AS 401 | /  /
                      +--------+ +--------+/  /
                                             /
                                 +--------+ /
                                 | AS 500 |/
                                 +--------+
AS 100 peers with ASes 203, 302, 401, and 500, who each have peers as diagramed above. AS 100 wants to match routes originated from its directly connected customers (ASes 203, 302, 401, and 500) in addition to routes originated from their directly connected customers (ASes 202, 301, and 400). The easiest way to create this regular expression would be to think about what we are first trying to match, and then write out all possibilities of these matches. In our case these possibilities are:
203
203 202
302
302 301
401
401 400
500
Now we could simply create an expression with multiple lines (7 lines to be exact) that would match all of the possible AS paths, but suppose that AS 100 wants to keep this match as flexible as possible so that it will apply to any other ASes in the future. Now let’s try to generalize the above AS-Path information into a regex.
First off we know that each of the matches is going to start and going to end. This means that the first character we will have is “^” and the last character is “$”. Next we know that between the “^” and “$” there will be either one AS or two ASes. We don’t necessarily know what numbers these ASes will be, so for the time being let’s use the placeholder “X”. Based on this our new possible matches are:
^X$
^X X$
Next let’s reason out what X can represent. Since X is only one single AS, there will be no spaces, commas, parentheses, or any other special type characters. In other words, X must be a number. However, since we don’t know what the exact path is, we must take into account that X may be a number with more than one character (i.e. 10, 123, or 10101). This essentially equates to one or more instance of any number zero through nine. In regular expression syntax our two matches would therefore now read:
^[0-9]+$
^[0-9]+ [0-9]+$
This expressions reads that we either have a number consisting of one or more characters zero through nine, or a number consisting of one or more characters zero through nine followed by a space and then another number consisting of one or more characters zero through nine. This brings our expression down to two lines as opposed to our original seven, but let’s see how we can combine the above two as well. To combine them, first let us compare what is different between them.
^[0-9]+$
^[0-9]+ [0-9]+$
From looking at the expressions it is evident that the sequence “ [0-9]+” is the difference. In the first case “ [0-9]+” does not exist in the expression. In the second case “ [0-9]+” does exist in the expression. In other words, “ [0-9]+” is either true or false. True or false (0 or 1) is represented by the character “?” in regex syntax. Therefore we can reduce our expression to:
^[0-9]+ [0-9]+?$
At this point we run into a problem with the order of operations of the regex. As denoted above the question mark will apply only to the plus sign, and not to the range [0-9]. Instead, we want the question mark to apply to the string “ [0-9]+” as a whole. Therefore this string needs to be grouped together using parentheses. Parentheses are used in regular expressions as simply a logical grouping. Therefore our final expression reduces to:
^[0-9]+( [0-9]+)?$
Note that to match a question mark in IOS, the escape sequence CTRL-V or ESC-Q must be entered first, otherwise the IOS parser will interpret the question mark as an attempt to invoke the context sensitive help.

0 comments:

About US

Network Bulls is Best Institute for Cisco CCNA, CCNA Security, CCNA Voice, CCNP, CCNP Security, CCNP Voice, CCIP, CCIE RS, CCIE Security Version 4 and CCIE Voice Certification courses in India. Network Bulls is a complete Cisco Certification Training and Course Coaching Institute in Gurgaon/Delhi NCR region in India. Network Bulls has Biggest Cisco Training labs in India. Network Bulls offers all Cisco courses on Real Cisco Devices. Network Bulls has Biggest Team of CCIE Trainers in North India, with more than 90% of passing rate in First Attempt for CCIE Security Version 4 candidates.
  • Biggest Cisco Training Labs in India
  • More than 90% Passing Rate in First Attempt
  • CCIE Certified Trainers for All courses
  • 24x7 Lab Facility
  • 100% Job Guaranteed Courses
  • Awarded as Best Network Security Institute in 2011 by Times
  • Only Institute in India, to provide CCIE Security Version 4.0 Training
  • CCIE Security Version 4 Training available
  • Latest equipments available for CCIE Security Version 4

Network Bulls Institute Gurgaon

Network Bulls Institute in Gurgaon is one of the best Cisco Certifications Training Centers in India. Network Bulls has Biggest Networking Training and Networking courses labs in North India. Network Bulls is offering Cisco Training courses on real Cisco Routers and Switches. Labs of Network Bulls Institute are 24x7 Available. There are many coaching Centers in Delhi, Gurgaon, Chandigarh, Jaipur, Surat, Mumbai, Bangalore, Hyderabad and Chennai, who are offering Cisco courses, but very few institutes out of that big list are offering Cisco Networking Training on real Cisco devices, with Live Projects. Network Bulls is not just an institute. Network Bulls is a Networking and Network Security Training and consultancy company, which is offering Cisco certifications Training as well support too. NB is awarded in January 2012, by Times, as Best Network Security and Cisco Training Institute for the year 2011. Network Bulls is also offering Summer Training in Gurgaon and Delhi. Network Bulls has collaboration with IT companies, from which Network Bulls is offering Networking courses in Summer Training and Industrial Training of Btech BE BCA MCA students on real Live projects. Job Oriented Training and Industrial Training on Live projects is also offered by network bulls in Gurgaon and Delhi NCR region. Network Bulls is also providing Cisco Networking Trainings to Corporates of Delhi, Gurgaon, bangalore, Jaipur, Nigeria, Chandigarh, Mohali, Haryana, Punjab, Bhiwani, Ambala, Chennai, Hyderabad.
Cisco Certification Exams are also conducted by Network Bulls in its Gurgaon Branch.
Network Bulls don't provide any Cisco CCNA, CCNP simulations for practice. They Provide High End Trainings on Real topologies for high tech troubleshooting on real Networks. There is a list of Top and best Training Institutes in India, which are providing CCNA and CCNP courses, but NB has a different image from market. Many students has given me their feedbacks and reviews about Network bulls Institute, but there were no complaints about any fraud from this institute. Network Bulls is such a wonderful place to get trained from Industry expert Trainers, under guidance of CCIE Certified Engineers.

About Blog

This Blog Contains Links shared by sites: Cisco Guides, Dumps collection, Exam collection, Career Cert, Ketam Mehta, GodsComp.co.cc.

NB

NB
Cisco Networking Certifications Training

Cisco Training in Delhi

ccna training in gurgaon. ccnp course institute in gurgaon, ccie coaching and bootcamp training near gurgaon and delhi. best institute of ccna course in delhi gurgaon india. network bulls provides ccna,ccnp,ccsp,ccie course training in gurgaon, new delhi and india. ccsp training new delhi, ccie security bootcamp in delhi.

Testimonials : Network Bulls

My Name is Rohit Sharma and i Have done CCNA and CCNP Training in Gurgaon Center of Network Bulls and it was a great experience for me to study in Network Bulls.

Cisco Networking Certifications

Myself Komal Verma and i took CCSP Training from Network Bulls in Gurgaon. The day i joined Network Bulls, the day i get addicted with Networking Technologies and I thank Mr. Vikas Sheokand for this wonderful session of Networking. :)
I must say that Network Bulls is Best Institute of CCNA CCNP CCSP CCIE Course Training in Gurgaon, New Delhi and in India too.
Komal Verma

About a wonderfull CCIE Training Institute in Gurgaon

I am Kiran shah from New Delhi. I have recently completed my CCNA CCNP & CCIE Training in Gurgaon from Network Bulls and i recommend Network Bulls for Cisco Training in India.

Kiran Shah

Cisco Coaching and Learning Center

Disclaimer: This site does not store any files on its server. I only index and link to content provided by other sites. If you see any file on server that is against copy right you can inform me at (sidd12341 [at] gmail.com). I will delete that materials within two days. This Website is not official Website of any Institute like INE, Network Bulls, IP Expert. Thanks

CCIE Security Version 4

Cisco Finally updated CCIE Security Lab exam blueprint. WSA Ironport and ISE devices are added in CCIE Security Version 4 Lab Exam Syllabus Blueprint. In Updated CCIE Security Version 4 Syllabus blueprint, new technologies like Mobile Security, VoIP Security and IPV6 Security along with Network Security, are added. As in CCIE Security Version 3 blueprint, Cisco had focused on Network Security only, but now as per market demand, Cisco is looking forward to produce Internet gear Security Engineer, not only Network Security engineers.
In CCIE Security Version 4 Bluerpint, Lab Exam is going to be more interested than before. What is Difference in CCIE Security Version 3 and Version 4? Just go through the CCIE Security Version 4 Lab Equipment and Lab Exam Syllabus Blueprints and find out!